Cation transport in Escherichia coli. IX. Regulation of K transport

نویسندگان

  • D B Rhoads
  • W Epstein
چکیده

Kinetics of K exchange in the steady state and of net K uptake after osmotic upshock are reported for the four K transport systems of Escherichia coli: Kdp, TrkA, TrkD, and TrkF. Energy requirements for K exchange are reported for the Kdp and TrkA systems. For each system, kinetics of these two modes of K transport differ from those for net K uptake by K-depleted cells (Rhoads, D. B. F.B. Walters, and W. Epstein. 1976. J. Gen. Physiol. 67:325-341). The TrkA and TrkD systems are inhibited by high intracellular K, the TrkF system is stimulated by intracellular K, whereas the Kdp system is inhibited by external K when intracellular K is high. All four systems mediate net K uptake in response to osmotic upshock. Exchange by the Kdp and TrkA systems requires ATP but is not dependent on the protonmotive force. Energy requirements for the Kdp system are thus identical whether measured as net K uptake or K exchange, whereas the TrkA system differs in that it is dependent on the protonmotive force only for net K uptake. We suggest that in both the Kpd and TrkA systems formation of a phosphorylated intermediate is necessary for all K transport, although exchange transport may not consume energy. The protonmotive-force dependence of the TrkA system is interpreted as a regulatory influence, limiting this system to exchange except when the protonmotive force is high.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cation-coupling in chimeric melibiose carriers derived from Escherichia coli and Klebsiella pneumoniae. The amino-terminal portion is crucial for Na+ recognition in melibiose transport.

The melibiose carrier of Escherichia coli couples sugar transport to H+, Na+, and Li+, while that of Klebsiella pneumoniae utilizes only H+ and Li+. We made five chimeric carriers derived from the two carriers to identify the region(s) involved in Na+ recognition. The chimeric carriers E2K10, E4K8, E6K6, E8K4, and E10K2 have the amino-terminal 77, 144, 197, 298, and 349 amino acid residues deri...

متن کامل

Ion metabolism in a potassium accumulation mutant of Escherichia coli B. I. Potassium metabolism.

A potassium transport mutant of Escherichia coli is described which is deficient in the intake of potassium. The phenotype of this mutant is characterized by (i) failure to grow in K(+)-deficient medium, (ii) failure to accumulate K(+) in K(+)-deficient medium, (iii) a steady-state intracellular K(+) that varies sigmoidally with the medium K(+) concentration, (iv) a signoidally shaped rate-conc...

متن کامل

Study the Transport Properties of Anion and Cation Exchange Membranes toward Various Ions Using Chronopotentiometry

The transport properties of various anion and cation exchange membranes were studied in different electrolyte solutions using chronopotentiometry technique to get insight about the influence of the counter ion on the transport properties of the membranes. The investigated samples include heterogeneous ion exchange membranes varying in the functionality of fixed charged gro...

متن کامل

Cation Exchange Nanocomposite Membrane Containing Mg(OH)2 Nanoparticles: Characterization and Transport Properties

In this study, ion exchange nanocomposite membranes was prepared by addition of Mg(OH)2 nanoparticles to a blend containing sulfonated polyphenylene oxide and sulfonated polyvinylchloride via a simple casting method. Magnesium hydroxide nanoparticles were synthesized via a facile sono-chemical reaction and were selected as filler additive in fabrication of ion exchange nanocomposite membranes. ...

متن کامل

Phosphoenolpyruvate-dependent phosphotransferase system enzyme III and plasmid-encoded sucrose transport in Escherichia coli K-12.

The phosphoenolpyruvate-dependent carbohydrate:phosphotransferase system enzyme IISCR, specific for and regulated by sucrose, was analyzed in derivatives of Escherichia coli K-12 carrying the sucrose plasmid pUR404. Enzyme IIScr, coded for by gene scrA of the plasmid, depended for its transport and phosphorylation activity directly on the phosphotransferase system enzyme IIIGlc, Scr, coded for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 72  شماره 

صفحات  -

تاریخ انتشار 1978